1DED

CRYSTAL STRUCTURE OF ALKALOPHILIC ASPARAGINE 233-REPLACED CYCLODEXTRIN GLUCANOTRANSFERASE COMPLEXED WITH AN INHIBITOR, ACARBOSE, AT 2.0 A RESOLUTION


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.222 
  • R-Value Work: 0.163 
  • R-Value Observed: 0.163 

wwPDB Validation   3D Report Full Report


This is version 2.1 of the entry. See complete history


Literature

Crystal structure of alkalophilic asparagine 233-replaced cyclodextrin glucanotransferase complexed with an inhibitor, acarbose, at 2.0 A resolution.

Ishii, N.Haga, K.Yamane, K.Harata, K.

(2000) J Biochem 127: 383-391

  • DOI: https://doi.org/10.1093/oxfordjournals.jbchem.a022619
  • Primary Citation of Related Structures:  
    1DED

  • PubMed Abstract: 

    The product specificity of cyclodextrin glucanotransferase (CGTase) from alkalophilic Bacillus sp. #1011 is improved to near-uniformity by mutation of histidine-233 to asparagine. Asparagine 233-replaced CGTase (H233N-CGTase) no longer produces alpha-cyclodextrin, while the wild-type CGTase from the same bacterium produces a mixture of predominantly alpha-, beta-, and gamma-cyclodextrins, catalyzing the conversion of starch into cyclic or linear alpha-1,4-linked glucopyranosyl chains. In order to better understand the protein engineering of H233N-CGTase, the crystal structure of the mutant enzyme complexed with a maltotetraose analog, acarbose, was determined at 2.0 A resolution with a final crystallographic R value of 0.163 for all data. Taking a close look at the active site cleft in which the acarbose molecule is bound, the most probable reason for the improved specificity of H233N-CGTase is the removal of interactions needed to form a compact ring like a-cyclodextrin.


  • Organizational Affiliation

    Biophysical Chemistry Laboratory, National Institute of Bioscience and Human-Technology, Tsukuba, Ibaraki 305-8566, Japan. ishii@nibh.go.jp.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
CYCLODEXTRIN GLUCANOTRANSFERASE
A, B
686Bacillus sp. 1011Mutation(s): 1 
EC: 2.4.1.19
UniProt
Find proteins for P05618 (Bacillus sp. (strain 1011))
Explore P05618 
Go to UniProtKB:  P05618
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP05618
Sequence Annotations
Expand
  • Reference Sequence
Oligosaccharides

Help

Entity ID: 2
MoleculeChains Length2D Diagram Glycosylation3D Interactions
4,6-dideoxy-4-{[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-en-1-yl]amino}-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-beta-D-glucopyranose
C, D, E
3N/AN/A
Glycosylation Resources
GlyTouCan:  G08743RW
GlyCosmos:  G08743RW
Biologically Interesting Molecules (External Reference) 1 Unique
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.222 
  • R-Value Work: 0.163 
  • R-Value Observed: 0.163 
  • Space Group: P 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 64.93α = 85.1
b = 73.83β = 105.4
c = 79.05γ = 100.5
Software Package:
Software NamePurpose
MADNESSdata collection
X-PLORmodel building
X-PLORrefinement
MADNESSdata reduction
X-PLORphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2000-04-07
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Source and taxonomy, Version format compliance
  • Version 1.3: 2017-10-04
    Changes: Refinement description
  • Version 1.4: 2018-04-18
    Changes: Data collection
  • Version 2.0: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Atomic model, Data collection, Database references, Derived calculations, Non-polymer description, Structure summary
  • Version 2.1: 2021-11-03
    Changes: Database references, Structure summary