1BU8

RAT PANCREATIC LIPASE RELATED PROTEIN 2


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.244 
  • R-Value Work: 0.202 
  • R-Value Observed: 0.202 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.4 of the entry. See complete history


Literature

Structure and activity of rat pancreatic lipase-related protein 2.

Roussel, A.Yang, Y.Ferrato, F.Verger, R.Cambillau, C.Lowe, M.

(1998) J Biol Chem 273: 32121-32128

  • DOI: https://doi.org/10.1074/jbc.273.48.32121
  • Primary Citation of Related Structures:  
    1BU8

  • PubMed Abstract: 

    The pancreas expresses several members of the lipase gene family including pancreatic triglyceride lipase (PTL) and two homologous proteins, pancreatic lipase-related proteins 1 and 2 (PLRP1 and PLRP2). Despite their similar amino acid sequences, PTL, PLRP1, and PLRP2 differ in important kinetic properties. PLRP1 has no known activity. PTL and PLRP2 differ in substrate specificity, bile acid inhibition, colipase requirement, and interfacial activation. To begin understanding the structural explanations for these functional differences, we solved the crystal structure of rat (r)PLRP2 and further characterized its kinetic properties. The 1.8 A structure of rPLRP2, like the tertiary structure of human PTL, has a globular N-terminal domain and a beta-sandwich C-terminal domain. The lid domain occupied the closed position, suggesting that rPLRP2 should show interfacial activation. When we reexamined this issue with tripropionin as substrate, rPLRP2 exhibited interfacial activation. Because the active site topology of rPLRP2 resembled that of human PTL, we predicted and demonstrated that the lipase inhibitors E600 and tetrahydrolipstatin inhibit rPLRP2. Although PTL and rPLRP2 have similar active sites, rPLRP2 has a broader substrate specificity that we confirmed using a monolayer technique. With this assay, we showed for the first time that rPLRP2 prefers phosphatidylglycerol and ethanolamine over phosphatidylcholine. In summary, we confirmed and extended the observation that PLRP2 lipases have a broader substrate specificity than PTL, we demonstrated that PLRP2 lipases show interfacial activation, and we solved the first crystal structure of a PLRP2 lipase that contains a lid domain.


  • Organizational Affiliation

    Architecture et Fonction des Macromolécules Biologiques, CNRS-IFR1 UPR 9039, 31 Chemin Joseph Aiguier, 13402 Marseille cedex 20, France.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
PROTEIN (PANCREATIC LIPASE RELATED PROTEIN 2)452Rattus norvegicusMutation(s): 0 
EC: 3.1.1.3
Membrane Entity: Yes 
UniProt
Find proteins for P54318 (Rattus norvegicus)
Explore P54318 
Go to UniProtKB:  P54318
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP54318
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
NAG
Query on NAG

Download Ideal Coordinates CCD File 
B [auth A]2-acetamido-2-deoxy-beta-D-glucopyranose
C8 H15 N O6
OVRNDRQMDRJTHS-FMDGEEDCSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.244 
  • R-Value Work: 0.202 
  • R-Value Observed: 0.202 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 57.393α = 90
b = 79.133β = 102.07
c = 60.94γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
AMoREphasing
X-PLORrefinement

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1998-12-23
    Type: Initial release
  • Version 1.1: 2008-04-01
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Non-polymer description, Version format compliance
  • Version 1.3: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Data collection, Derived calculations, Structure summary
  • Version 1.4: 2023-08-09
    Changes: Data collection, Database references, Refinement description, Structure summary