1BOQ

PRO REGION C-TERMINUS: PROTEASE ACTIVE SITE INTERACTIONS ARE CRITICAL IN CATALYZING THE FOLDING OF ALPHA-LYTIC PROTEASE


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.236 
  • R-Value Work: 0.159 
  • R-Value Observed: 0.159 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Pro region C-terminus:protease active site interactions are critical in catalyzing the folding of alpha-lytic protease.

Peters, R.J.Shiau, A.K.Sohl, J.L.Anderson, D.E.Tang, G.Silen, J.L.Agard, D.A.

(1998) Biochemistry 37: 12058-12067

  • DOI: https://doi.org/10.1021/bi980883v
  • Primary Citation of Related Structures:  
    1BOQ

  • PubMed Abstract: 

    alpha-Lytic protease is encoded with a large (166 amino acid) N-terminal pro region that is required transiently both in vivo and in vitro for the correct folding of the protease domain [Silen, J. L. , and Agard, D. A. (1989) Nature 341, 462-464; Baker, D., et al. (1992) Nature 356, 263-265]. The pro region also acts as a potent inhibitor of the mature enzyme [Baker, D., et al. (1992) Proteins: Struct.,Funct., Genet. 12, 339-344]. This inhibition is mediated through direct steric occlusion of the active site by the C-terminal residues of the pro region [Sohl, J. L., et al. (1997) Biochemistry 36, 3894-3904]. Through mutagenesis and structure-function analyses we have begun to investigate the mechanism by which the pro region acts as a single turnover catalyst to facilitate folding of the mature protease. Of central interest has been mapping the interface between the pro region and the protease and identifying interactions critical for stabilizing the rate-limiting folding transition state. Progressive C-terminal deletions of the pro region were found to have drastic effects on the rate at which the pro region folds the protease but surprisingly little effect on inhibition of protease activity. The observed kinetic data strongly support a model in which the detailed interactions between the pro region C-terminus and the protease are remarkably similar to those of known substrate/inhibitor complexes. Further, mutation of two protease residues near the active site have significant effects on stabilization of the folding transition state (kcat) or in binding to the folding intermediate (KM). Our results suggest a model for the alpha-lytic protease pro region-mediated folding reaction that may be generally applicable to other pro region-dependent folding reactions.


  • Organizational Affiliation

    The Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California, San Francisco 94143, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
PROTEIN (ALPHA-LYTIC PROTEASE)198Lysobacter enzymogenesMutation(s): 1 
EC: 3.4.21.12
UniProt
Find proteins for P00778 (Lysobacter enzymogenes)
Explore P00778 
Go to UniProtKB:  P00778
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP00778
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
SO4
Query on SO4

Download Ideal Coordinates CCD File 
B [auth A],
C [auth A]
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.236 
  • R-Value Work: 0.159 
  • R-Value Observed: 0.159 
  • Space Group: P 32 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 66.2α = 90
b = 66.2β = 90
c = 80.2γ = 120
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
X-PLORmodel building
X-PLORrefinement
X-PLORphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1998-08-12
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2021-11-03
    Changes: Database references, Derived calculations
  • Version 1.4: 2023-08-09
    Changes: Data collection, Refinement description