1BG4

XYLANASE FROM PENICILLIUM SIMPLICISSIMUM


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.75 Å
  • R-Value Free: 0.229 
  • R-Value Work: 0.200 
  • R-Value Observed: 0.200 

wwPDB Validation   3D Report Full Report


This is version 2.1 of the entry. See complete history


Literature

Structure of the xylanase from Penicillium simplicissimum.

Schmidt, A.Schlacher, A.Steiner, W.Schwab, H.Kratky, C.

(1998) Protein Sci 7: 2081-2088

  • DOI: https://doi.org/10.1002/pro.5560071004
  • Primary Citation of Related Structures:  
    1BG4

  • PubMed Abstract: 

    Despite its relatively low pH and temperature optimum, the xylanase from Penicillium simplicissimum performs exceedingly well under conditions of paper bleaching. We have purified and characterized this enzyme, which belongs to family 10 of glycosyl hydrolases. Its gene was cloned, and the sequence of the protein was deduced from the nucleotide sequence. The xylanase was crystallized from ammonium sulfate at pH 8.4, and X-ray data were collected at cryo-temperature to a crystallographic resolution of 1.75 A. The crystal structure was solved by molecular replacement using the catalytic domain of the Clostridium thermocellum xylanase as a search model, and refined to a residual of R = 20% (R(free) = 23%) for data between 10 and 1.75 A. The xylanase folds in an (alpha/beta)8 barrel (TIM-barrel), with additional helices and loops arranged at the "top" forming the active site cleft. In its overall shape, the P. simplicissimum xylanase structure is similar to other family 10 xylanases, but its active site cleft is much shallower and wider. This probably accounts for the differences in catalysis and in the mode of action of this enzyme. Three glycerol molecules were observed to bind within the active site groove, one of which interacts directly with the catalytic glutamate residues. It appears that they occupy putative xylose binding subsites.


  • Organizational Affiliation

    Abteilung für Strukturbiologie, Institut für Physikalische Chemie, Karl-Franzens Universität Graz, Austria.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
ENDO-1,4-BETA-XYLANASE302Penicillium simplicissimumMutation(s): 0 
EC: 3.2.1.8
UniProt
Find proteins for P56588 (Penicillium simplicissimum)
Explore P56588 
Go to UniProtKB:  P56588
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP56588
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 3 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
TRS
Query on TRS

Download Ideal Coordinates CCD File 
H [auth A],
I [auth A]
2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL
C4 H12 N O3
LENZDBCJOHFCAS-UHFFFAOYSA-O
GOL
Query on GOL

Download Ideal Coordinates CCD File 
J [auth A]
K [auth A]
L [auth A]
M [auth A]
N [auth A]
J [auth A],
K [auth A],
L [auth A],
M [auth A],
N [auth A],
O [auth A],
P [auth A]
GLYCEROL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
NA
Query on NA

Download Ideal Coordinates CCD File 
B [auth A]
C [auth A]
D [auth A]
E [auth A]
F [auth A]
B [auth A],
C [auth A],
D [auth A],
E [auth A],
F [auth A],
G [auth A]
SODIUM ION
Na
FKNQFGJONOIPTF-UHFFFAOYSA-N
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
PCA
Query on PCA
A
L-PEPTIDE LINKINGC5 H7 N O3GLN
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.75 Å
  • R-Value Free: 0.229 
  • R-Value Work: 0.200 
  • R-Value Observed: 0.200 
  • Space Group: P 31 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 81.02α = 90
b = 81.02β = 90
c = 113.4γ = 120
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
X-PLORmodel building
X-PLORrefinement
X-PLORphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1998-08-12
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Non-polymer description, Version format compliance
  • Version 2.0: 2019-12-25
    Changes: Derived calculations, Polymer sequence
  • Version 2.1: 2023-08-02
    Changes: Database references, Derived calculations, Refinement description