1XSM

PROTEIN R2 OF RIBONUCLEOTIDE REDUCTASE FROM MOUSE


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.30 Å
  • R-Value Free: 0.250 
  • R-Value Work: 0.191 
  • R-Value Observed: 0.191 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

The three-dimensional structure of mammalian ribonucleotide reductase protein R2 reveals a more-accessible iron-radical site than Escherichia coli R2.

Kauppi, B.Nielsen, B.B.Ramaswamy, S.Larsen, I.K.Thelander, M.Thelander, L.Eklund, H.

(1996) J Mol Biol 262: 706-720

  • DOI: https://doi.org/10.1006/jmbi.1996.0546
  • Primary Citation of Related Structures:  
    1XSM

  • PubMed Abstract: 

    The three-dimensional structure of mouse ribonucleotide reductase R2 has been determined at 2.3 A resolution using molecular replacement and refined to an R-value of 19.1% (Rfree = 25%) with good stereo-chemistry. The overall tertiary structure architecture of mouse R2 is similar to that from Escherichia coli R2. However, several important structural differences are observed. Unlike the E. coli protein, the mouse dimer is completely devoid of beta-strands. The sequences differ significantly between the mouse and E. coli R2s, but there is high sequence identity among the eukaryotic R2 proteins, and the identities are localized over the whole sequence. Therefore, the three-dimensional structures of other mammalian ribonucleotide reductase R2 proteins are expected to be very similar to that of the mouse enzyme. In mouse R2 a narrow hydrophobic channel leads to the proposed binding site for molecular oxygen near to the iron-radical site in the interior of the protein. In E. coli R2 this channel is blocked by the phenyl ring of a tyrosine residue, which in mouse R2 is a serine. These structural variations may explain the observed differences in sensitivity to radical scavengers. The structure determination is based on diffraction data from crystals grown at pH 4.7. Unexpectedly, the protein is not iron-free, but contains one iron ion bound at one of the dinuclear iron sites. This ferric ion is bound with partial occupancy and is coordinated by three glutamic acids (one bidentate) and one histidine in a bipyramidal coordination that has a free apical coordination position. Soaking of crystals in a solution of ferrous salt at pH 4.7 increased the occupancy on the already occupied site, but without any detectable binding at the second site.


  • Organizational Affiliation

    Department of Molecular Biology, Swedish University of Agricultural Sciences, Biomedical Center, Uppsala, Sweden.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
RIBONUCLEOTIDE REDUCTASE R2390Mus musculusMutation(s): 0 
Gene Names: NRDD
EC: 1.17.4.1
UniProt & NIH Common Fund Data Resources
Find proteins for P11157 (Mus musculus)
Explore P11157 
Go to UniProtKB:  P11157
IMPC:  MGI:98181
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP11157
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
FE
Query on FE

Download Ideal Coordinates CCD File 
B [auth A]FE (III) ION
Fe
VTLYFUHAOXGGBS-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.30 Å
  • R-Value Free: 0.250 
  • R-Value Work: 0.191 
  • R-Value Observed: 0.191 
  • Space Group: C 2 2 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 77.078α = 90
b = 108.932β = 90
c = 92.9γ = 90
Software Package:
Software NamePurpose
X-PLORmodel building
X-PLORrefinement
DENZOdata reduction
SCALEPACKdata scaling
X-PLORphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1997-01-11
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-08-09
    Changes: Database references, Derived calculations, Other, Refinement description