1XIU

Crystal structure of the agonist-bound ligand-binding domain of Biomphalaria glabrata RXR


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.243 
  • R-Value Work: 0.193 
  • R-Value Observed: 0.196 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.4 of the entry. See complete history


Literature

Crystal Structure of a Novel Tetrameric Complex of Agonist-bound Ligand-binding Domain of Biomphalaria glabrata Retinoid X Receptor.

de Groot, A.de Rosny, E.Juillan-Binard, C.Ferrer, J.-L.Laudet, V.Pierce, R.J.Pebay-Peyroula, E.Fontecilla-Camps, J.-C.Borel, F.

(2005) J Mol Biol 354: 841-853

  • DOI: https://doi.org/10.1016/j.jmb.2005.09.090
  • Primary Citation of Related Structures:  
    1XIU

  • PubMed Abstract: 

    Nuclear receptors form an important class of transcription regulators in metazoans. To learn more about the evolution of these proteins, we have initiated structural studies on nuclear receptor ligand-binding domains from various animals. Here we present the crystal structure of the ligand-binding domain (LBD) of the retinoid X receptor (RXR) from the mollusc Biomphalaria glabrata. The structure reveals a novel tetrameric association in which each monomer is complexed to the human RXR ligand 9-cis retinoic acid and to a human co-activator-derived peptide. The ligand and the co-activator peptide are bound in essentially the same manner as observed in previously reported human RXR LBD structures, suggesting that the mechanisms of RXR-mediated transcription regulation are very similar in mollusc and human. The structure shows further that binding of ligand and co-activator peptide does not necessarily lead to the typical holo-conformation in which helix 12 (H12) folds back and packs against the LBD. Within a canonical dimer, only one monomer is in this closed agonist conformation. The other monomer is in an open conformation with H12 protruding from the LBD core, occupying the H12 interaction groove of another open monomer in an adjacent dimer in a domain swapping fashion, thus resulting in a tetrameric association. Additional tetramer interfaces are formed between H11 of the closed LBD and H6 of the open LBD. This novel holo-tetramer configuration may have a biological role in activating genes whose promoters are poorly recognised by dimers but much more efficiently by the corresponding tetramers.


  • Organizational Affiliation

    Laboratoire de Cristallographie et Cristallogenèse des Protéines, Institut de Biologie Structurale 'Jean-Pierre Ebel' (UMR 5075, CEA-CNRS-UJF), 41 rue Jules Horowitz, 38027 Grenoble cedex 1, France. nicolaas.degroot@cea.fr


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
RXR-like protein
A, B
230Biomphalaria glabrataMutation(s): 0 
Gene Names: RXR
UniProt
Find proteins for Q8T5C6 (Biomphalaria glabrata)
Explore Q8T5C6 
Go to UniProtKB:  Q8T5C6
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ8T5C6
Sequence Annotations
Expand
  • Reference Sequence

Find similar proteins by:  Sequence   |   3D Structure  

Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
Nuclear receptor coactivator 1C [auth E],
D [auth F]
15N/AMutation(s): 0 
EC: 2.3.1.48
UniProt & NIH Common Fund Data Resources
Find proteins for Q15788 (Homo sapiens)
Explore Q15788 
Go to UniProtKB:  Q15788
PHAROS:  Q15788
GTEx:  ENSG00000084676 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ15788
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.243 
  • R-Value Work: 0.193 
  • R-Value Observed: 0.196 
  • Space Group: P 61 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 87.1α = 90
b = 87.1β = 90
c = 320.4γ = 120
Software Package:
Software NamePurpose
REFMACrefinement
XDSdata reduction
XDSdata scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2005-09-13
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Advisory, Version format compliance
  • Version 1.3: 2016-11-16
    Changes: Non-polymer description
  • Version 1.4: 2023-08-23
    Changes: Data collection, Database references, Derived calculations, Refinement description