1V0C

Structure of AAC(6')-Ib in complex with Kanamycin C and AcetylCoA.


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.225 
  • R-Value Work: 0.177 
  • R-Value Observed: 0.179 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

Mechanistic and Structural Analysis of Aminoglycoside N-Acetyltransferase Aac(6')-Ib and its Bifunctional, Fluoroquinolone-Active Aac(6')-Ib-Cr Variant.

Vetting, M.W.Park, C.H.Hegde, S.S.Jacoby, G.A.Hooper, D.C.Blanchard, J.S.

(2008) Biochemistry 47: 9825

  • DOI: https://doi.org/10.1021/bi800664x
  • Primary Citation of Related Structures:  
    1V0C, 2BUE, 2VQY

  • PubMed Abstract: 

    Enzymatic modification of aminoglycoside antibiotics mediated by regioselective aminoglycoside N-acetyltransferases is the predominant cause of bacterial resistance to aminoglycosides. A recently discovered bifunctional aminoglycoside acetyltransferase (AAC(6')-Ib variant, AAC(6')-Ib-cr) has been shown to catalyze the acetylation of fluoroquinolones as well as aminoglycosides. We have expressed and purified AAC(6')-Ib-wt and its bifunctional variant AAC(6')-Ib-cr in Escherichia coli and characterized their kinetic and chemical mechanism. Initial velocity and dead-end inhibition studies support an ordered sequential mechanism for the enzyme(s). The three-dimensional structure of AAC(6')-Ib-wt was determined in various complexes with donor and acceptor ligands to resolutions greater than 2.2 A. Observation of the direct, and optimally positioned, interaction between the 6'-NH 2 and Asp115 suggests that Asp115 acts as a general base to accept a proton in the reaction. The structure of AAC(6')-Ib-wt permits the construction of a molecular model of the interactions of fluoroquinolones with the AAC(6')-Ib-cr variant. The model suggests that a major contribution to the fluoroquinolone acetylation activity comes from the Asp179Tyr mutation, where Tyr179 makes pi-stacking interactions with the quinolone ring facilitating quinolone binding. The model also suggests that fluoroquinolones and aminoglycosides have different binding modes. On the basis of kinetic properties, the pH dependence of the kinetic parameters, and structural information, we propose an acid/base-assisted reaction catalyzed by AAC(6')-Ib-wt and the AAC(6')-Ib-cr variant involving a ternary complex.


  • Organizational Affiliation

    Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
AAC(6')-IB202Escherichia coliMutation(s): 2 
EC: 2.3.1.82
UniProt
Find proteins for Q6SJ71 (Escherichia coli)
Explore Q6SJ71 
Go to UniProtKB:  Q6SJ71
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ6SJ71
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.225 
  • R-Value Work: 0.177 
  • R-Value Observed: 0.179 
  • Space Group: P 43 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 57.399α = 90
b = 57.399β = 90
c = 147.113γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
MOSFLMdata reduction
SCALAdata scaling
PHENIXphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2008-09-02
    Type: Initial release
  • Version 1.1: 2011-05-07
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2019-03-06
    Changes: Data collection, Experimental preparation, Other