2GM0

Linear dimer of stemloop SL1 from HIV-1


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 20 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

NMR Structure of the Full-length Linear Dimer of Stem-Loop-1 RNA in the HIV-1 Dimer Initiation Site.

Ulyanov, N.B.Mujeeb, A.Du, Z.Tonelli, M.Parslow, T.G.James, T.L.

(2006) J Biol Chem 281: 16168-16177

  • DOI: https://doi.org/10.1074/jbc.M601711200
  • Primary Citation of Related Structures:  
    2GM0

  • PubMed Abstract: 

    The packaging signal of HIV-1 RNA contains a stem-loop structure, SL1, which serves as the dimerization initiation site for two identical copies of the genome and is important for packaging of the RNA genome into the budding virion and for overall infectivity. SL1 spontaneously dimerizes via a palindromic hexanucleotide sequence in its apical loop, forming a metastable kissing dimer form. Incubation with nucleocapsid protein causes this form to refold to a thermodynamically stable mature linear dimer. Here, we present an NMR structure of the latter form of the full-length SL1 sequence of the Lai HIV-1 isolate. The structure was refined using nuclear Overhauser effect and residual dipolar coupling data. The structure presents a symmetric homodimer of two RNA strands of 35 nucleotides each; it includes five stems separated by four internal loops. The central palindromic stem is surrounded by two symmetric adenine-rich 1-2 internal loops, A-bulges. All three adenines in each A-bulge are stacked inside the helix, consistent with the solution structures of shorter SL1 constructs determined previously. The outer 4-base pair stems and, proximal to them, purine-rich 1-3 internal loops, or G-bulges, are the least stable parts of the molecule. The G-bulges display high conformational variability in the refined ensemble of structures, despite the availability of many structural restraints for this region. Nevertheless, most conformations share a similar structural motif: a guanine and an adenine from opposite strands form a GA mismatch stacked on the top of the neighboring stem. The two remaining guanines are exposed, one in the minor groove and another in the major groove side of the helix, consistent with secondary structure probing data for SL1. These guanines may be recognized by the nucleocapsid protein, which binds tightly to the G-bulge in vitro.


  • Organizational Affiliation

    Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA.


Macromolecules
Find similar nucleic acids by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains LengthOrganismImage
RNA (35-MER)
A, B
35N/A
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 20 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2006-04-25
    Type: Initial release
  • Version 1.1: 2008-05-01
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2022-03-09
    Changes: Database references, Derived calculations