1LUX

NMR SOLUTION STRUCTURE OF THE ANTICODON OF YEAST TRNA-PHE WITH 3 MODIFICATIONS (OMC32 OMG34 M5C40)


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the least restraint violations, structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Naturally-occurring Modification Restricts the Anticodon Domain Conformational Space of tRNA(Phe).

Stuart, J.W.Koshlap, K.M.Guenther, R.Agris, P.F.

(2003) J Mol Biol 334: 901-918

  • DOI: https://doi.org/10.1016/j.jmb.2003.09.058
  • Primary Citation of Related Structures:  
    1LUU, 1LUX

  • PubMed Abstract: 

    Post-transcriptional modifications contribute chemistry and structure to RNAs. Modifications of tRNA at nucleoside 37, 3'-adjacent to the anticodon, are particularly interesting because they facilitate codon recognition and negate translational frame-shifting. To assess if the functional contribution of a position 37-modified nucleoside defines a specific structure or restricts conformational flexibility, structures of the yeast tRNA(Phe) anticodon stem and loop (ASL(Phe)) with naturally occurring modified nucleosides differing only at position 37, ASL(Phe)-(Cm(32),Gm(34),m(5)C(40)), and ASL(Phe)-(Cm(32),Gm(34),m(1)G(37),m(5)C(40)), were determined by NMR spectroscopy and restrained molecular dynamics. The ASL structures had similarly resolved stems (RMSD approximately 0.6A) of five canonical base-pairs in standard A-form RNA. The "NOE walk" was evident on the 5' and 3' sides of the stems of both RNAs, and extended to the adjacent loop nucleosides. The NOESY cross-peaks involving U(33) H2' and characteristic of tRNA's anticodon domain U-turn were present but weak, whereas those involving the U(33) H1' proton were absent from the spectra of both ASLs. However, ASL(Phe)-(Cm(32),Gm(34),m(1)G(37),m(5)C(40)) exhibited the downfield shifted 31P resonance of U(33)pGm(34) indicative of U-turns; ASL(Phe)-(Cm(32),Gm(34),m(5)C(40)) did not. An unusual "backwards" NOE between Gm(34) and A(35) (Gm(34)/H8 to A(35)/H1') was observed in both molecules. The RNAs exhibited a protonated A(+)(38) resulting in the final structures having C(32).A(+)(38) intra-loop base-pairs, with that of ASL(Phe)-(Cm(32),Gm(34),m(1)G(37),m(5)C(40)) being especially well defined. A single family of low-energy structures of ASL(Phe)-(Cm(32),Gm(34), m(1)G(37),m(5)C(40)) (loop RMSD 0.98A) exhibited a significantly restricted conformational space for the anticodon loop in comparison to that of ASL(Phe)-(Cm(32),Gm(34),m(5)C(40)) (loop RMSD 2.58A). In addition, the ASL(Phe)-(Cm(32),Gm(34),m(1)G(37),m(5)C(40)) average structure had a greater degree of similarity to that of the yeast tRNA(Phe) crystal structure. A comparison of the resulting structures indicates that modification of position 37 affects the accuracy of decoding and the maintenance of the mRNA reading frame by restricting anticodon loop conformational space.


  • Organizational Affiliation

    Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA.


Macromolecules

Find similar nucleic acids by:  Sequence   |   3D Structure  

Entity ID: 1
MoleculeChains LengthOrganismImage
5'-R(*CP*CP*AP*GP*AP*(OMC)P*UP*(OMG)P*AP*AP*GP*AP*UP*(5MC)P*UP*GP*G)-3'17N/A
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the least restraint violations, structures with the lowest energy 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2003-09-09
    Type: Initial release
  • Version 1.1: 2008-04-28
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2022-02-23
    Changes: Data collection, Database references, Derived calculations