1FT2

CO-CRYSTAL STRUCTURE OF PROTEIN FARNESYLTRANSFERASE COMPLEXED WITH A FARNESYL DIPHOSPHATE SUBSTRATE


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.40 Å
  • R-Value Free: 0.268 
  • R-Value Work: 0.219 
  • R-Value Observed: 0.219 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

Cocrystal structure of protein farnesyltransferase complexed with a farnesyl diphosphate substrate.

Long, S.B.Casey, P.J.Beese, L.S.

(1998) Biochemistry 37: 9612-9618

  • DOI: https://doi.org/10.1021/bi980708e
  • Primary Citation of Related Structures:  
    1FT2

  • PubMed Abstract: 

    Protein farnesyltransferase (FTase) catalyzes the transfer of the hydrophobic farnesyl group from farnesyl diphosphate (FPP) to cellular proteins such as Ras at a cysteine residue near their carboxy-terminus. This process is necessary for the subcellular localization of these proteins to the plasma membrane and is required for the transforming activity of oncogenic variants of Ras, making FTase a prime target for anticancer therapeutics. The high-resolution crystal structure of rat FTase was recently determined, and we present here the X-ray crystal structure of the first complex of FTase with a FPP substrate bound at the active site. The isoprenoid moiety of FPP binds in an extended conformation in a hydrophobic cavity of the beta subunit of the FTase enzyme, and the diphosphate moiety binds to a positively charged cleft at the top of this cavity near the subunit interface. The observed location of the FPP molecule is consistent with mutagenesis data. This binary complex of FTase with FPP leads us to suggest a "molecular ruler" hypothesis for isoprenoid substrate specificity, where the depth of the hydrophobic binding cavity acts as a ruler discriminating between isoprenoids of differing lengths. Although other length isoprenoids may bind in the cavity, only the 15-carbon farnesyl moiety binds with its C1 atom in register with a catalytic zinc ion as required for efficient transfer to the Ras substrate.


  • Organizational Affiliation

    Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
PROTEIN FARNESYLTRANSFERASE315Rattus norvegicusMutation(s): 0 
Gene Names: CDNA
EC: 2.5.1
UniProt
Find proteins for Q04631 (Rattus norvegicus)
Explore Q04631 
Go to UniProtKB:  Q04631
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ04631
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
PROTEIN FARNESYLTRANSFERASE401Rattus norvegicusMutation(s): 0 
Gene Names: CDNA
EC: 2.5.1
UniProt
Find proteins for Q02293 (Rattus norvegicus)
Explore Q02293 
Go to UniProtKB:  Q02293
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ02293
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Binding Affinity Annotations 
IDSourceBinding Affinity
FPP BindingDB:  1FT2 Kd: 2 (nM) from 1 assay(s)
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.40 Å
  • R-Value Free: 0.268 
  • R-Value Work: 0.219 
  • R-Value Observed: 0.219 
  • Space Group: P 65
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 166.66α = 90
b = 166.66β = 90
c = 98.82γ = 120
Software Package:
Software NamePurpose
X-PLORmodel building
X-PLORrefinement
DENZOdata reduction
SCALEPACKdata scaling
X-PLORphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1998-11-04
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-08-09
    Changes: Database references, Derived calculations, Other, Refinement description